Zichen "Charles" Zhang*, Yunshuang Li*, Osbert Bastani, Abhishek Gupta, Dinesh Jayaraman, Yecheng Jason Ma⁺, Luca Weihs⁺

Motivation

- Multi-stage long horizon manipulation is challenging. Previous works may use LLM or Generation model for task or goal decompositions. But can we have an *off-the-shelf* method - *NO extra* data, training, cost, or task knowledge required? **YES!** Low-Level No-cost Long-horizon 1 T <u>raw videos 📽</u> Control Planning *Pecomposes* long-horizon tasks into meaningful sub-stages **Figure 3** Enables **OOD** generalization in Sim & Real Solves long-horizon multi-stage manipulation using RL from vision *without* reward engineering
- Sector Applicable to ANY visuomotor policy training

Universal Visual Decomposer (UVD)

UVD discovers subgoals by detecting phase shifts in the embedding space of the pre-trained representation.

- Pseudocode

Algorithm: Universal Visual Decomposer

Init: frozen visual encoder ϕ , $\tau = \{o_0, \dots, o_T\}$ *Init:* set of subgoals $\tau_{goal} = \{\}, t = T$ While t not small enough: $\tau_{goal} = \tau_{goal} \cup \{o_t\}$ $o_{t-n-1} \coloneqq \operatorname{argmax}_{o_h} d_{\phi}(o_h; o_t) < d_{\phi}(o_{h+1}; o_t), h < t$ (Eq. 3) t = t - n

End

	Random Partition		
	Training and InD Eval	0	
	MBLS MKLH	К	
	MKTHKBTS	м	
B	BTLS MBTL	К	
	мкзнмквз	к	
	MBTSMKTL	В	
	мквнквѕн	к	
	K B L S M K L S	М	

FrankaKitchen Simulation

- 4 out of 7 objects are manipulated in an arbitrary order
- Random train-eval partitions: While training on 16 sub-task seqs, the reset of 8 seqs are for compositional OOD evaluation.

- UVD - Policy Learning

With UVD's recursive decomposition , it can build upon any standard *goal-conditioned* visuomotor policy training

- UVD - RL Rewards

Progressive and optimally monotonic goal-embedding *distance difference* using UVD subgoals.

 $R(o_t, o_{t-})$

Experiments

Real-world experiments

- the bowl on the rack

Universal Visual Decomposer: $\mathbb{A}^{\mathbb{Z}}$ **Long-Horizon Manipulation Made Easy**

$$_{+1};\phi,g_i) := d_{\phi}(o_t;g_i) - d_{\phi}(o_{t+1};g_i)$$

Apple-in-Oven: picking apple, placing apple in the bowl, pushing the bowl into the oven, closing the oven.

Fries-and-Rack: picking a bowl, pour fries out of the bowl, placing

Fold-Cloth: diagonal fold, quarter fold, eighth fold, etc Initial/Intermediate novel states for OOD evaluation.

Millisecond level runtime for UVD!

	# frames	Load	Preprocess	UVD
FrankaKitchen	226.9	0.023	0.155	0.0023
In the wild	698		0.450	0.011

Results

Method	Success	Co
GCRL-VIP	0.0 / 0.0	0.
GCRL-VIP + Ours	0.65 / 1.0	0
GCRL-R3M	0.0 / 0.0	0.
GCRL-R3M + Ours	0.649 / 1.0	0

UVD's detection of monotone trends in feature space allows us to provide a naturally progressive reward signal

Baseline w/o UVD all *failed* for the initial (INIT) and intermediate (INTER) OOD states. UVD can also enable agents to auto-skip sub-stages preemptively finished by humans (robust to the intervention) and can reset to redo certain stages during deployment (recovery).

Check more visualizations, and online hosted demo at

zcczhang.github.io/UV

