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ABSTRACT. The Analysts’ Traveling Salesman Problem asks for necessary and sufficient condi-
tions under which a set is contained inside of a Lipschtiz image. One direction for further study is
to find a characterization of measures carried by Lipschitz graphs. In previous work, balls centered
at each point in the support are used to give a characterization of doubling measures that are carried
by Lipschitz graphs. To further extend that work, we develop and prove sufficient and necessary
conditions for doubling measures carried by Lipschitz graphs in terms of dyadic cubes. Along the
way, we prove a doubling measure property and a geometric lemma for measures that hold under the
dyadic cube regime. These new results provide a characterization of measures carried by Lipschitz
graphs that is more discrete in nature.

1. INTRODUCTION

A general goal of geometric measure theory that is to understand the global characterization of
a measure through the geometric data. In this paper, we contribute to the goal by studying the
interaction of measures with graphs. To formalize the notion and dive into this paper, we introduce
the terminology below.

Definition 1.1 (Lipschitz Function). The function f is called Lipschitz if

|f(x)− f(y)| ≤ c|x− y| (x, y ∈ X)

for 0 < c <∞

Definition 1.2 (Lipschitz Graph). Let V ∈ G(n,m) be an m-dimensional plane in Rn, and V ⊥ ∈
G(n, n −m) denotes its orthogonal complement. Let f : V → V ⊥ be a Lipschitz function. Then
Graph(f) = {(x, f(x)) : x ∈ V } is an m-Lipschitz graph.

where Grassmannian G denotes a collection of linear planes in Rn. For example, V ∈ G(1, 2)
represents the line in R2 going through the origin which is what we mainly work with in this paper.

Definition 1.3 (Carried). Let (X,M) be a measurable space, and let N ⊂ M be a family of
measurable sets. We say µ is carried by N if there exist countably many Ni ∈ N such that
µ (X\

⋃
iNi) = 0

In our scenario, when we say µ is carried by m-Lipschitz graphs, it is equivalent that there exists
a subset of Rn is contained µ-a.e. in an m-Lipschitz graph.

Recently, [BS15] and [BS17] characterized rectifiable Radon measures on R by L2 Jone’s beta
numbers, and [Nap20] characterized the measures in terms of rectifiable graphs. However, the
basic schema and proof they used for characterization is under the continuous space, restricted in
balls. In this paper, we introduce the idea of characterization of rectifiable measures under the
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discrete space of dyadic cubes with fixed generations. Some related work for rectifiable measure
involved with the dyadic cubes can be found in [Jon90], [Tol09], [BS16], and [BN21].

Definition 1.4 (Dyadic Cubes). A dyadic cube Q is a set of the form

(1) Q :=

[
j1
2k
,
j1 + 1

2k

)
× · · · ×

[
jn
2k
,
jn + 1

2k

)
, k, j1, . . . , jn ∈ Z

For convenience, we let sideQ denote the side length of the dyadic cube Q, and centerQ denote
the center point of Q. The dilation cube of Q then is defined by nQ, n ∈ N where sidenQ =
n sideQ, centernQ = centerQ. In some of proofs in this paper, we used Qk to denote the dyadic
cube with side length |2−k|.

Definition 1.5 (Doubling Measure). We say that a measure µ is doubling measure if there exists a
constant K such that for all r > 0 and µ-a.e. x,

µ(B(x, 2r)) ≤ Kµ(B(x, r))

In this case, we say µ is K−doubling.

2. PRELIMINARIES

In this paper, we extend the results of [Nap20] under the dyadic cube system. We will first bring
the point bad cones which are had for characterize Lipschitz graphs.

Definition 2.1 (Bad Cones). Let V be an m-dimensional plane in Rn, 0 < α < ∞, then we can
define the bad cone at x with respect to V and α by:

CB(x, V, α) := {y ∈ Rn : dist(y − x, V ) > α|x− y|}
For convenience, we let CB(x, r, V, α) := CB(x, V, α) ∩B(x, r).

Based on the definition of bad cones, we can define good cones at x with respect to V and α as
CG(x, V, α) := Rn \ CB(x, V, α). To be clear, We define the distance dist(X, Y ) from a set X to
another set Y by:

dist(X, Y ) := inf {|x− y| : x ∈ X, y ∈ Y }
We now introduce the cones to the dyadic cube generations. Different from cones centred at

balls, we define two kinds of cube cones based on intersection and union of point cones with
centres inside the cubes. To be more specific about the definition of cones on the dyadic cube, we
further split the definition of bad cone based on intersection and containment of their boundary
with the dyadic cubes system.

Definition 2.2 (Bad Cube Cones). Let Q be the dyadic cube, two basic definitions of a bad cone at
Q with respect to an m-dimensional linear plane V and α are:

C1
B(Q, V, α) :=

⋃
x∈Q

CB(x, V, α) and C2
B(Q, V, α) :=

⋂
x∈Q

CB(x, V, α)

two discrete definitions of bad cube cones:

Ck,1
B (Q, V, α) := {R : R ∩ Ck

B(Q, V, α) 6= ∅}, Ck,2
B (Q, V, α) := {R : R ⊂ Ck

B(Q, V, α)}
for R denote the dyadic cube with the same side length as Q in the cube system, and k = 1, 2.

We extend the idea of [Nap20, Theorem D] for our main theorem, and the corollary below is
useful to construct the proof.
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Corollary 2.1 ([Nap20, Corollary 7.1]). Let µ be a Radon measure on H,V be an m-dimensional
linear plane in H , α ∈ (0, 1), and fixed 0 < r <∞. If for µ-a.e. x ∈ H

µ (CB(x, r, V, α)) = 0

then µ is carried by m-Lipschitz graphs.

In consideration of the dyadic cube generations, we will first extend the doubling measure prop-
erty in the dyadic cube system.

Lemma 2.1. Suppose that a doubling measure µ on R2 is K−doubling, then for any dyadic cube
Q containing µ-typical point x, s, n ∈ N, n ≥ 2,

(2) µ(2nsQ) ≤ K3n−3µ(2sQ)

Proof. By the half open definition of the dyadic cube, for µ-a.e. x ∈ R2, x must be in only one
cube Q. Let rs = s · sideQ/2. We claim that 2nsQ ⊂ B(x, 23n−3rs) and B(x, rs) ⊂ 2sQ. For
any q ∈ 2nsQ, | centerQ − x| ≤

√
2/2 · sideQ and | center 2nsQ − q| ≤

√
2/2 · side 2nsQ =

2n−1
√

2s · sideQ. Note that n ≥ 2, so

|x− q| ≤

(√
2

2
+ 2n−1

√
2s

)
sideQ <

23n−3s

2
sideQ = 23n−3rs

Then q ∈ B(x, 23n−3rs) and thus 2nsQ ⊂ B(x, 23n−3rs). Consider that for all p ∈
⋃
q∈QB(q, rs)\

sQ, dist(p, ∂sQ) ≤ rs = dist(∂2sQ, sQ), so B(x, rs) ⊂
⋃
q∈QB(q, rs) ⊂ 2sQ. Therefore, by the

containment and doubling measure property,

µ(2nsQ) ≤ µ(B(x, 23n−3rs)) ≤
3n−3∏
i=1

K · µ(B(x, rs)) ≤ K3n−3µ(B(x, rs)) ≤ K3n−3µ(2sQ)

�

Now we propose our main theorem here. We use the notationQ ↓ x to indicate we are interested
in the dyadic cube Q with side length 2−k containing x as k →∞.

Theorem A. Let µ be a K-doubling measure on R2. Then for µ-a.e. x ∈ R2 contained in the
dyadic cube Q, there exists V ∈ G(1, 2), α ∈ (0, 1), and s = s(α) ∈ N such that

(i) (Sufficient Condition) if the limit

(3) lim
Q↓x

µ(C2,1
B (Q, V, α) ∩ 2sQ)

µ(2sQ)
= 0

then µ is carried by Lipschitz graphs with respect to V and the Lipschitz constant for each
graph is at most 1 + 1/

√
(1− α′2) for any α < α′ < 1.

(ii) (Necessary Condition) if µ is carried by Lipschitz graphs with respect to V and the Lipschitz
constant at most

√
α2/(1− α2), then (3) holds.

3. PROOF OF THE MAIN RESULT

To begin with, we first provide some corollaries that will be used to fully prove the sufficient
and necessary condition of Theorem A.

We will first propose a lemma for a distance that guarantees the distance for the containment
among cubes.
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Lemma 3.1. For 0 < α < α′ < 1, V ∈ G(1, 2), a dyadic cube Q in R2, and s ≥ 3
√
2(1+α)
α′−α . Let 2R

be a dilation of a cube R such that R is the dyadic cube with the same side length as Q and

dist(Q, 2R) ≥ s · sideQ

then
(i) if 2R ⊂ C2,1

B (Q, V, α′), then 2R ⊂ C2,2
B (Q, V, α).

(ii) if for n = n(s) ∈ N such that 2n ≥ 2(
√

2 + 1)s+ 3
√

2, then 2sQ ⊂ 2nR.
(iii) if for m = m(s) ∈ N such that 2m ≥ (3

√
2 + 2)s+ 3

√
2, then 3sQ ⊂ 2mR.

The proof can be found in the appendix.
With everything established, we are ready to prove Theorem A now.

Proof of Theorem A. We first show the sufficient condition holds. In order to distinguish the dyadic
cube with different generations, we denote Qk as dyadic cube with side length 2−k, k ∈ N. By (3)
there exists a large enough k such that for any δ > 0,

(4) µ(C2,1
B (Qk, V, α) ∩ 2sQ) < δµ(2sQk)

Fix a k and Qk 3 x. Now choose s ≥ 6
√

2(1 + α′)

α− α′
, s ∈ N. Then construct sets:

SQk
:=

{
2Rk : dist(2Rk, Qk) ≥

1

2
s · sideQk, 2Rk ∩ (2sQk ∩ C2,1

B (Qk, V, α
′)) 6= ∅

}
S ′Qk

:=

{
2Rk : dist(2Rk, Qk) ≥

1

2
s · sideQk, 2Rk ⊂ 2sQk ∩ C2,1

B (Qk, V, α
′)

}
S ′′Qk

:= SQk
\ S ′Qk

where 2Rk is the dilation cube of the dyadic cubeRk with the same side length asQk. Then for any
2Rk ∈ S ′Qk

, by Lemma 3.1 (i), 2Rk ⊂ C2,2
B (Qk, V, α) and consequently 2Rk ⊂ C2,1

B (Qk, V, α) ∩
2sQk as well. Then, fix 2n = n(s), n ∈ N such that 2n ≥ (

√
2 + 1)s + 3

√
2, then by Lemma 3.1

(ii), 2sQk ⊂ 2nRk. Now assume that there are some µ-a.e. x are contained in 2Rk, then by (4) and
Lemma 2.1 (2),

µ(2nRk) ≤ K3n−3µ(2Rk) ≤ K3n−3µ(C2,1
B (Q, V, α) ∩ 2sQk) < δK3n−3µ(2sQk)

which is a contradiction if we choose δ < K−3n+3. Thus,

µ(S ′Qk
) = µ(

⋃
2Rk∈S′

Qk

2Rk) =
∑

2RK∈S′
Qk

µ(2Rk) = 0

Similarly, we will consider any 2R′k ∈ S ′′Qk
. Now fix 2m = m(s),m ∈ N such that 2m ≥

(3
√

2/2 + 1)s + 3
√

2 and then by Lemma 3.1 (ii), 2R′k ⊂ 3sQk ⊂ 2mRk. Then with the similar
contradiction proof noting that µ(2sQk) ≤ µ(3sQk), we can say µ(S ′′Qk

) = 0. Hence, µ(SQk
) =

µ(S ′Qk
∪ S ′′Qk

) = 0. Note that this will hold for all dyadic cubes with the smaller side length than
Qk.

Assume that r = (s −
√

2/2) · sideQk then for µ-a.e. x ∈ Qk, any y ∈ CB(x, r, V, α′), we
have dist(x − y, V ) > α′|x − y|. Choose k′ > k, and then there exists dyadic cube Qk′ 3
x such that (

√
2 + s/2) · 2−k

′ ≤ |y − x|. Then dist(y,Qk′)| ≥ |y − x| − dist(x, ∂Qk′) ≥
(
√

2 + s/2 −
√

2) sideQk′ = s/2 · sideQk′ , so that y ∈
⋃∞
i=k{SQi

: x ∈ Qi ⊂ Qk}. Hence,
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CB(x, r, V, α′) ⊂
⋃∞
i=k{SQi

: x ∈ Qi ⊂ Qk}. Thus, for µ-a.e. x ∈ E where x must be contained
in only one Qk,

µ(CB(x, r, V, α′)) ≤ µ

(
∞⋃
i=k

{SQi
: x ∈ Qi ⊂ Qk)}

)
= 0

It follows immediately that for µ-a.e. x ∈ E, µ(CB(x, r, V, α′)) = 0. Applying Corollary 2.1, the
sufficient condition holds then.

To prove the necessary condition, suppose that E is contained in a collection of Lipschitz graphs
{Γi} where Γi ∩ E = {(v, fi(v)) : (v, fi(v)) ∈ E} ⊂ V × V ⊥ = R2 where fi is a Lipschitz
function fi : V → V ⊥ with Lipschitz constant Li at most

√
α2/(1− α2). Let any point p =

(v1, fi(v1)), q = (v2, fi(v2)) ∈ E ∩ Γi, then we have |fi(v1)− fi(v2)| ≤ Li|v1 − v2|. Consider the
good cone CG(p, V, α), then,

|p− q| =
√
|v1 − v2|2 + |fi(v1)− fi(v2)|2 ≥

√
1

L2
i

+ 1|fi(v1)− fi(v2)| ≥
1

α
dist(p− q, V )

Thus, q ∈ CG(p, V, α). As p, q,Γi are arbitrary, E ⊂ CG(x, V, α),∀x ∈ E. Now, for Qk 3 x,

(5) C2,1
B (Qk, V, α) ∩ 2sQk ⊂ CB(x, V, α) ∩ 2sQk ⊂ 2sQk \ CG(x, V, α) ⊂ 2sQk \ E

Next, we claim that

(6) lim
k→∞

µ(2sQk \ E)

µ(2sQk)
= 0

We choose rk = (
√

2s +
√

2/2) · 2−k such that apparently 2sQk ⊂ B(x, rk) ⊂ 4sQk for any
x ∈ Qk. Note that by our choice of rk, when k →∞, then rk → 0. By Lemma 2.1 and Corollary
A.1,

lim
k→∞

µ(2sQk \ E)

µ(2sQk)
≤ lim

k→∞

µ(2sQk \ E)

K−3µ(4sQk)
≤ K3 lim

k→∞

µ(B(x, rk) \ E)

µ(B(x, rk))
= 0

Therefore (6) holds. Combining (5),

lim
k→∞

µ(C2,1
B (Qk, V, α) ∩ 2sQk)

µ(2sQk)
= 0

This completes the proof of the necessary condition. �

Note that since C2,2
B (Q, V, α) ⊂ C2

B(Q, V, α), Lemma A also holds if replace C2,1
B (Q, V, α) with

C2
B(Q, V, α) in the limit.



6 ZICHEN ZHANG, YUTONG WU, AND LISA NAPLES

REFERENCES

[BN21] Matthew Badger and Lisa Naples. Radon measures and lipschitz graphs. Bulletin of the London Mathematical
Society, 2021.

[BS15] Matthew Badger and Raanan Schul. Multiscale analysis of 1-rectifiable measures: necessary conditions.
Mathematische Annalen, 361(3):1055–1072, 2015.

[BS16] Matthew Badger and Raanan Schul. Two sufficient conditions for rectifiable measures. Proceedings of the
American Mathematical Society, 144(6):2445–2454, 2016.

[BS17] Matthew Badger and Raanan Schul. Multiscale analysis of 1-rectifiable measures ii: characterizations. Anal-
ysis and Geometry in Metric Spaces, 5(1):1–39, 2017.

[Jon90] Peter W Jones. Rectifiable sets and the traveling salesman problem. Inventiones Mathematicae, 102(1):1–15,
1990.

[Mat99] Pertti Mattila. Geometry of sets and measures in Euclidean spaces: fractals and rectifiability. Number 44.
Cambridge university press, 1999.

[Nap20] Lisa Naples. Rectifiability of pointwise doubling measures in hilbert space. arXiv preprint arXiv:2002.07570,
2020.

[Tol09] Xavier Tolsa. Uniform rectifiability, calderón–zygmund operators with odd kernel, and quasiorthogonality.
Proceedings of the London Mathematical Society, 98(2):393–426, 2009.

APPENDIX A.

In this section we collect the definition, result, and proof that are used above.

Definition A.1 (Diameter). A non-empty subset A of Rn has the greatest distance apart from points
in A, denotes as diam(A). such that

diam(A) := sup {|x− y| : x, y ∈ A}

Corollary A.1. If A ⊂ Rn is λ measurable, then the limit

lim
r↓0

λ(A ∩B(x, r))

λ(B(x, r))

exists and equals 1 for λ almost all x ∈ A and equals 0 for λ almost all x ∈ Rn\A.

The proof can be found in [Mat99, Corollary 2.14].

Proof of Lemma 3.1. (i) When 2R ⊂ C2,1
B (Q, V, α′), there exists some r ∈ 2R ∩ C1

B(Q, V, α′)
and hence for any q ∈ Q such that r ∈ CB(q, V, α′), so dist(r − q, V ) > α′|r − q|. Besides,
arbitrary r′ ∈ 2R and q′ ∈ Q must satisfy |r− r′| ≤ 2

√
2 · sideR and |q− q′| ≤

√
2 · sideQ,

respectively. Assume that |r−q| = s′ ·sideQ then s′ ≥ s. Since |r−r′| ≥ | dist(r′−q′, V )−
dist(r − q, V )| − |q − q′|, no matter dist(r′ − q′, V ) ≤ dist(r − q, V ) or dist(r′ − q′, V ) ≥
dist(r − q, V ),

dist(r′ − q′, V ) ≥ dist(r − q, V )− |q − q′| − |r − r′|

> α′|r − q| − 3
√

2 · sideQ

≥ (α′s′ − 3
√

2) · sideQ

≥ α(s′ + 3
√

2) · sideQ

≥ α(|r − q|+ |r − r′|+ |q − q′|)
≥ α|r′ − q′|
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The fourth inequality holds since s′ ≥ s ≥ 3
√

2(1 + α)

α′ − α
. Therefore, 2R ⊂ {R : R ⊂⋂

q′∈QCB(q′, V, α)} = C2,2
B (Q, V, α).

(ii) Assume for all q′′ ∈ 2sQ, then

| center 2R− q′′| ≤
(

1

2
diam 2R + dist(2R,Q) +

1

2
diamQ+

1

2
diam 2sQ

)
≤

(
√

2 + s+

√
2

2
+
√

2s

)
sideQ

≤ 2n

2
sideR =

1

2
side 2nR

which implies that 2sQ ⊂ B(centerR,
1

2
side 2nR) ⊂ 2nR.

(iii) Similarly, assume ∀q′′′ ∈ 3sQ, then

| center 2R− q′′′| ≤ 1

2
diam 2R + dist(2R,Q) +

1

2
diamQ+

1

2
diam 3sQ

≤

(
√

2 + s+

√
2

2
+

3

2

√
2s

)
sideQ

≤ 2m

2
sideR =

1

2
side 2mR

which implies that 3sQ ⊂ B(centerR,
1

2
side 2mR) ⊂ 2mR.

�
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