Characterization of Rectifiable Measures that are Carried by Lipschitz Graphs

Charles Zhang, Yutong Wu, Lisa Naples

Mathematics, Statistics, and Computer Science Department, Macalester College

Background	Related Work	Main Steps of the Proof	
alysis perspective, measures are used to define notions	Geometric Lemma[DL08, Lemma 4.7]	Proof of Sufficient Condition	
nd the size of a square is its area. To understand how sign weight, we explore how they interact with various	Let $F \subset \mathbb{R}^2$, V be a line through the origin, and $\alpha \in (0, 1)$. If $F \cap C_{\mathcal{B}}(x, V, \alpha) = \emptyset$ for all $x \in F$	Fix a Q_k with a large enough k and construct sets $S_{Q_k} := \left\{ 2R_k : \operatorname{dist}(2R_k, Q_k) \ge \frac{1}{2}s \cdot \operatorname{side} Q_k, 2R_k \cap (2sQ_k \cap C_{\mathcal{B}}^{I,1}(Q_k, V, \alpha')) \neq \emptyset \right\}$	
ts. Here we can explore and find the characterization which are carried by the Lipschitz graphs. Analysts by the property of Lipschitz graphs that we can find	then $F \subset \Gamma$ where Γ is a 1-Lipschitz graph with respect to V and the Lipschitz constant corresponding to Γ is at most $1 + 1/(1 - \alpha^2)^{1/2}$.	$S'_{Q_k} := \left\{ 2R_k : \operatorname{dist}(2R_k, Q_k) \ge \frac{1}{2} s \cdot \operatorname{side} Q_k, 2R_k \subset 2sQ_k \cap C_{\mathcal{B}}^{I,1}(Q_k, V, \alpha') \right\}$ $S''_{Q_k} := S_{Q_k} \setminus S'_{Q_k}$	
inst everywhere on them		where D is a dyadic subawith the same side length as O and Ω	

where R_k is a dyadic cube with the same side length as Q_k and $2R_k$ is its dilation. By Lemma 1, Lemma 2, (1), and proof by contradiction we show $\mu(S_{Q_k}) = 0$. With some analysis, we show

		1	λ	
		$/\infty$		
(т 7			\cap

From the ana of size for set arc length an measures ass classes of set of measures are attracted tangents almost everywhere on them.

Definitions

To deep dive into the world of measures, we firstly need to introduce following definitions:

- Measure A measures $\mu : \mathcal{M} \to \mathbb{R}$ is a function that assigns a "size" to sets in \mathcal{M} according to the following rules:
- $\mu(E) \ge 0$ for all $E \in \mathcal{M}$
- $\mu(\emptyset) = 0.$
- $\mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$ for a pairwise disjoint collection of set $\{E_i\}$
- **Doubling Measure** We say that a measure μ is a K-doubling measure for some constant K if for all r > 0 and μ -a.e. x,

 $\mu(B(x,2r)) \le K\mu(B(x,r))$

- **Dyadic Cubes** are squares on \mathbb{R}^2 formed as cross product of half open intervals with side length as multiples of 1/2.
- **Point Cones** The bad cones on \mathbb{R}^2 with respect to a line V through the origin and $\alpha \in (0,1)$ are defined as

 $C_{\mathcal{B}}(x, V, \alpha) := \{ y \in \mathbb{R}^n : \operatorname{dist}(y - x, V) > \alpha |x - y| \}$

- Visualization of point cones and several numerical relationship is illustrated in Figure (b) below.
- Cube Cones Bad Cube cones used in our work are defined as $C^{I}_{\mathcal{B}}(Q, V, \alpha) := \bigcap_{x \in Q} C_{\mathcal{B}}(x, V, \alpha)$, and discretely defined as
 - $C^{I,1}_{\mathcal{B}}(Q,V,\alpha) := \{ R : R \cap C^{I}_{\mathcal{B}}(Q,V,\alpha) \neq \emptyset \}$ $C^{I,2}_{\mathcal{B}}(Q,V,\alpha) := \{R : R \subset C^{I}_{\mathcal{B}}(Q,V,\alpha)\}$

Figure: An example of the geometric lemma

Main Result

Theorem A

then

Let μ be a K-doubling measure on \mathbb{R}^2 . Then for μ -a.e. $x \in \mathbb{R}^2$ contained in the dyadic cube Q, there exists a line V, $\alpha \in (0,1)$, and $s = s(\alpha) \in \mathbb{N}$ such that

• (Sufficient Condition) if the limit

 $\lim_{Q \downarrow x} \frac{\mu(C_{\mathcal{B}}^{I,1}(Q, V, \alpha) \cap 2sQ)}{\mu(2sQ)} = 0$ (1)

then μ is carried by Lipschitz graphs with respect to V and the Lipschitz constant for each graph is at most $1 + 1/(1 - \alpha'^2)^{1/2}$ for any $\alpha < \alpha' < 1$.

• (Necessary Condition) if μ is carried by Lipschitz graphs with respect to V and the Lipschitz constant at most $\alpha/(1-\alpha^2)^{1/2}$, then (1) holds.

$$\mu(C_{\mathcal{B}}(x,r,V,\alpha')) \le \mu\left(\bigcup_{i=k} \left\{S_{Q_i} : x \in Q_i \subset Q_k\right)\right\} = 0$$

By the Geometric Lemma and [Nap20, Corollary 7.1], the sufficient condition holds immediately.

where R is the dyadic cube same as Q. Visualization of three definitions of cube cones are shown in the shaded area in Figure (b) below.

Figure: Cones Visualization

- Lipschitz Function The function f is called Lipschitz if
 - $|f(x) f(y)| \le c|x y| \quad (x, y \in \mathbb{R}, 0 < c < \infty)$
- Lipschitz Graph Let $f: V \to V^{\perp}$ be a Lipschitz function. Then $Graph(f) = \{(x, f(x)) : x \in V\}$ is a Lipschitz graph
- Carried Let $(\mathbb{R}^2, \mathcal{M})$ be a measurable space, and let $\mathcal{N} \subset \mathcal{M}$ be

Note: $C^{I,1}_{\mathcal{B}}$ in the limit can be replaced with $C^{I}_{\mathcal{B}}$ as well.

Proved New Lemmas

To fully prove the sufficient and necessary condition of Theorem A, we first provide lemmas below.

Lemma 1 (Choices of Scaling for Containment)

For $0 < \alpha < \alpha' < 1$, a line V, a dyadic cube Q in \mathbb{R}^2 , and $s \ge \frac{3\sqrt{2}(1+\alpha)}{\alpha'-\alpha}$. Let 2R be a dilation of a cube R such that R is the dyadic cube with the same side length as Q and

 $\operatorname{dist}(Q, 2R) \ge s \cdot \operatorname{side} Q$

- (i) if $2R \subset C^{I,1}_{\mathcal{B}}(Q, V, \alpha')$, then $2R \subset C^{I,2}_{\mathcal{B}}(Q, V, \alpha)$. (ii) if for $n = n(s) \in \mathbb{N}$ such that $2^n \ge 2(\sqrt{2}+1)s + 3\sqrt{2}$, then $2sQ \subset 2^n R.$
- (iii) if for $m = m(s) \in \mathbb{N}$ such that $2^m \ge (3\sqrt{2}+2)s + 3\sqrt{2}$, then $3sQ \subset 2^m R.$

Lemma 2 (Doubling Property for Cubes)

Proof of Necessary Condition

By the assumption, we show

 $C^{I,1}_{\mathcal{B}}(Q_k, V, \alpha) \cap 2sQ_k \subset C_{\mathcal{B}}(x, V, \alpha) \cap 2sQ_k$ $\subset 2sQ_k \setminus C_{\mathcal{G}}(x, V, \alpha) \subset 2sQ_k \setminus E$

where E consists of μ -a.e. x. By Measure Differentiation [Mat99, Corollary 2.14] and Lemma 2 if we set $r_k = (\sqrt{2s} + \sqrt{2/2}) \cdot 2^{-k}$, we show

 $\lim_{k \to \infty} \frac{\mu(2sQ_k \setminus E)}{\mu(2sQ_k)} \le \lim_{k \to \infty} \frac{\mu(2sQ_k \setminus E)}{K^{-3}\mu(4sQ_k)} \le K^3 \lim_{k \to \infty} \frac{\mu(B(x, r_k) \setminus E)}{\mu(B(x, r_k))} = 0$ (4) Combining (3) and (4),

$$\lim_{k \to \infty} \frac{\mu(C_{\mathcal{B}}^{I,1}(Q_k, V, \alpha) \cap 2sQ_k)}{\mu(2sQ_k)} = 0$$

This completes the proof of the necessary condition.

References

Camillo De Lellis. [DL08] Rectifiable sets, densities and tangent measures, volume 7.

a family of measurable sets. We say μ is carried by \mathcal{N} if there exist countably many $N_i \in \mathcal{N}$ such that $\mu (\mathbb{R}^2 \setminus \bigcup_i N_i) = 0$

When we say μ is carried by Lipschitz graphs, it is equivalent that there exists a subset of \mathbb{R}^n is contained μ -a.e. in countably many

Lipschitz graph.

Suppose that a doubling measure μ on \mathbb{R}^2 is K-doubling, then for

any dyadic cube Q containing μ -typical point x,

where $s, n \in \mathbb{N}, n \geq 2$.

 $\mu(2^n s Q) \le K^{3n-3} \mu(2s Q)$

European Mathematical Society, 2008.

(2)

[Mat99] Pertti Mattila Geometry of sets and measures in Euclidean spaces: fractals and rectifiability. Number 44. Cambridge university press, 1999.

[Nap20] Lisa Naples. Rectifiability of pointwise doubling measures in hilbert space. arXiv preprint arXiv:2002.07570, 2020.

(3)