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From the analysis perspective,measures are used to define notions
of size for sets. For example, traditionally the "size" of a curve is its
arc length and the size of a square is its area. To understand how
measures assign weight, we explore how they interact with various
classes of sets. Here we can explore and find the characterization
of measures which are carried by the Lipschitz graphs. Analysts
are attracted by the property of Lipschitz graphs that we can find
tangents almost everywhere on them.
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To deep dive into the world of measures, we firstly need to intro-
duce following definitions:
Measure A measures µ : M æ R is a function that assigns a
"size" to sets in M according to the following rules:

µ(E) Ø 0 for all E œ M
µ(ÿ) = 0.
µ (SŒ

i=1 Ei) = PŒ
i=1 µ(Ei) for a pairwise disjoint collection of set {Ei}

Doubling MeasureWe say that a measure µ is a K-doubling
measure for some constant K if for all r > 0 and µ-a.e. x,

µ(B(x, 2r)) Æ Kµ(B(x, r))
Dyadic Cubes are squares on R2 formed as cross product of
half open intervals with side length as multiples of 1/2.
Point Cones The bad cones on R2 with respect to a line V
through the origin and – œ (0, 1) are defined as

CB(x, V, –) := {y œ Rn : dist(y ≠ x, V ) > –|x ≠ y|}
Visualization of point cones and several numerical relationship
is illustrated in Figure (b) below.
Cube Cones Bad Cube cones used in our work are defined as
CI

B(Q, V, –) := T
xœQ CB(x, V, –), and discretely defined as

CI,1
B (Q, V, –) := {R : R fl CI

B(Q, V, –) ”= ÿ}
CI,2

B (Q, V, –) := {R : R µ CI
B(Q, V, –)}

where R is the dyadic cube same as Q. Visualization of three
definitions of cube cones are shown in the shaded area in
Figure (b) below.

(a) Point Cones (b) Cube Cones

Figure: Cones Visualization

Lipschitz Function The function f is called Lipschitz if
|f (x) ≠ f (y)| Æ c|x ≠ y| (x, y œ R, 0 < c < Œ)

Lipschitz Graph Let f : V æ V ‹ be a Lipschitz function. Then
Graph(f ) = {(x, f (x)) : x œ V } is a Lipschitz graph
Carried Let (R2, M) be a measurable space, and let N µ M be
a family of measurable sets. We say µ is carried by N if there
exist countably many Ni œ N such that µ (R2\ S

i Ni) = 0

When we say µ is carried by Lipschitz graphs, it is equivalent that
there exists a subset of Rn is contained µ-a.e. in countably many
Lipschitz graph.
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Geometric Lemma[DL08, Lemma 4.7]

Let F µ R2, V be a line through the origin, and – œ (0, 1). If
F fl CB(x, V, –) = ÿ for all x œ F

thenF µ �where � is a 1-Lipschitz graphwith respect to V and the
Lipschitz constant corresponding to � is at most 1 + 1/ (1 ≠ –2)1/2

.

Figure: An example of the geometric lemma
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Theorem A

Let µ be a K-doubling measure on R2. Then for µ-a.e. x œ R2

contained in the dyadic cube Q, there exists a line V , – œ (0, 1),
and s = s(–) œ N such that

(Sufficient Condition) if the limit

lim
Q¿x

µ(CI,1
B (Q, V, –) fl 2sQ)

µ(2sQ) = 0 (1)

then µ is carried by Lipschitz graphs with respect to V and the
Lipschitz constant for each graph is at most 1 + 1/(1 ≠ –Õ2)1/2

for any – < –Õ < 1.
(Necessary Condition) if µ is carried by Lipschitz graphs with
respect to V and the Lipschitz constant at most –/(1 ≠ –2)1/2,
then (1) holds.

Note: CI,1
B in the limit can be replaced with CI

B as well.
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To fully prove the sufficient and necessary condition of Theorem
A, we first provide lemmas below.

Lemma 1 (Choices of Scaling for Containment)

For 0 < – < –Õ < 1, a line V , a dyadic cubeQ inR2, and s Ø 3
Ô

2(1+–)
–Õ≠– .

Let 2R be a dilation of a cube R such that R is the dyadic cube with
the same side length as Q and

dist(Q, 2R) Ø s · side Q

then

(i) if 2R µ CI,1
B (Q, V, –Õ), then 2R µ CI,2

B (Q, V, –).
(ii) if for n = n(s) œ N such that 2n Ø 2(

Ô
2 + 1)s + 3

Ô
2, then

2sQ µ 2nR.

(iii) if for m = m(s) œ N such that 2m Ø (3
Ô

2 + 2)s + 3
Ô

2, then
3sQ µ 2mR.

Lemma 2 (Doubling Property for Cubes)

Suppose that a doubling measure µ on R2 is K≠doubling, then for
any dyadic cube Q containing µ-typical point x,

µ(2nsQ) Æ K3n≠3µ(2sQ) (2)
where s, n œ N, n Ø 2.
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Proof of Sufficient Condition
Fix a Qk with a large enough k and construct sets

SQk :=
⇢

2Rk : dist(2Rk, Qk) Ø 1
2s · side Qk, 2Rk fl (2sQk fl CI,1

B (Qk, V, –Õ)) ”= ÿ
�

S Õ
Qk

:=
⇢

2Rk : dist(2Rk, Qk) Ø 1
2s · side Qk, 2Rk µ 2sQk fl CI,1

B (Qk, V, –Õ)
�

S ÕÕ
Qk

:= SQk \ S Õ
Qk

where Rk is a dyadic cubewith the same side length as Qk and 2Rk

is its dilation. By Lemma 1, Lemma 2, (1), and proof by contradiction
we show µ(SQk) = 0. With some analysis, we show

µ(CB(x, r, V, –Õ)) Æ µ

0

@
Œ[

i=k

{SQi : x œ Qi µ Qk)}
1

A = 0

By the Geometric Lemma and [Nap20, Corollary 7.1], the sufficient
condition holds immediately.

Figure: Visualization of the proof for Sufficient Condition

Proof of Necessary Condition

By the assumption, we show
CI,1

B (Qk, V, –) fl 2sQk µ CB(x, V, –) fl 2sQk

µ 2sQk \ CG(x, V, –) µ 2sQk \ E
(3)

where E consists of µ-a.e. x. By Measure Differentiation [Mat99,
Corollary 2.14] and Lemma 2 if we set rk = (

Ô
2s +

Ô
2/2) · 2≠k, we

show
lim

kæŒ

µ(2sQk \ E)
µ(2sQk)

Æ lim
kæŒ

µ(2sQk \ E)
K≠3µ(4sQk)

Æ K3 lim
kæŒ

µ(B(x, rk) \ E)
µ(B(x, rk))

= 0 (4)

Combining (3) and (4),

lim
kæŒ

µ(CI,1
B (Qk, V, –) fl 2sQk)

µ(2sQk)
= 0

This completes the proof of the necessary condition.
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